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Simulation of Solute Diffusion through Porous Media
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DEPARTMENT OF CHEMISTRY AND MATERIALS TECHNOLOGY
KYOTO INSTITUTE OF TECHNOLOGY

MATSUGASAKI, SAKYO-KU, KYOTO 606, JAPAN

ABSTRACT

Simulation of solute diffusion through porous media (membrane) was carried
out by a random walk procedure. The porous media used were three kinds of
two-dimensional square networks of channels with almost the same average pore
diameters and porosities, but with different pore size distributions. In the simula-
tion the partition equilibrium of solute between the bulk feed phase and the mem-
brane phase was established, and the apparent permeability in the steady state
was evaluated. First, only the steric interaction between the solute and the pore
wall was considered. In spite of the similar average pore diameters and porosities
of the networks, the apparent permeability and selectivity were dependent on
the kinds of networks. The network with more small pores showed the smaller
permeability and the higher selectivity. When the diameter of solute which can
be actually transported is fairly smaller than the average pore diameter, the net-
work with broad pore distribution and with more small pores is found to be useful
for obtaining higher selectivity. Next, the electrostatic and dispersion (van der
Waals) interactions between the solute and the pore wall were introduced in this
simulation. By such long-range interactions the selectivity increased while the
apparent permeability decreased. This result showed that the introduction of the
repulsive electrostatic interaction between membrane and solute is one useful
method for enhancing the selectivity. The effects of the kinds of networks on
transport properties in the presence of long-range interactions were similar to
those in the absence of such interactions.

Key Words. Solute diffusion; Porous model; Random walk;
Random channel widths; Partition coefficient
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INTRODUCTION

Transport in porous media plays an important role in membrane separa-
tions, in various chromatographics, and in catalysis operations. Porous
membranes have been especially well utilized in such operations as micro-
filtration, ultrafiltration, and dialysis. These membranes have contributed
to water and gas purification, metal recovery, drug release, and so on.

Many studies have been carried out on the clarification of pore struc-
tures of porous membranes, especially with respect to microfiltration and
ultrafiltration membranes (1-4). The relations between membrane struc-
tures and membrane performances have been clarified qualitatively. When
pore size distributions are clarified or given, it is very important to predict
ultrafiltration or dialysis separation results quantitatively. These predic-
tions are significant for producing novel functional membranes as well as
for designing the membrane process. However, as MacDonald pointed
out (5), there have been few studies from such points of view.

One method to predict membrane performances for a given membrane
structure is a computer simulation of solute transport. Sahimi et al. simu-
lated the dispersion in porous media and found it was described by the
convective-diffusion equation (6). They showed that the dispersion was
sensitive to pore radius distribution, pore coordination and blockage, and
the orientation of pores with mean flow direction. Imdakm and Sahimi
(7) and MacDonald (8) investigated particle migration or diffusion in the
given networks by the random walk procedure. The percolation properties
of the networks were discussed in these studies. Sahimi and Jue (9) and
Sahimi (10) studied hindered transport of large molecules in networks of
pores. They not only considered diffusion, but also convection. Moreover,
the effect of van der Waals interaction between particles and walls on the
transport of large particles in networks of capillary tubes were discussed
in the literature (11, 12). Since these studies were not always intended for
porous membranes, the separation of various particles or solutes was not
focused upon in these studies.

MacDonald modeled macromolecule diffusion through various porous
media, and the selectivity of diffusion with respect to molecular size was
monitored (5). It was found that wall-molecular interaction and molecular
size had an important effect on diffusion. The selectivity, which was de-
fined as the ratios of diffusivity, was discussed with respect to the pore
distribution and network connectivity. However, partition of solute be-
tween bulk solution and membrane phase, which is usually established in
actual membrane operation such as dialysis, was not taken into account.

In this study the particle (solute) transport was investigated by the ran-
dom walk procedure on three different irregular two-dimensional net-
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works. These networks have almost the same average pore diameters and
pore porosities. The purpose of this work is to clarify the effect of the
network structure; that is, pore distribution on the solute transport by
simulation. It is almost impossible to create real membranes with the same
average pore diameters and pore porosities, and with different pore distri-
butions. Therefore, the goal of this work could be achieved only by com-
puter simulation. For the relation between a particle and one certain pore,
a theory on the hindered diffusion of a particle into a pore has been well
developed (13). Numerical results have been presented not only about the
case which includes only steric and hydrodynamic interactions between
a particle and the pore wall, but also about the case involving electrostatic
and/or dispersion (van der Waals) interactions (14—16). Based on the theo-
ries, we evaluated solute partitioning between the bulk solution and the
membrane phase, and the residence time of the particle in the pores in
the two cases; that is, in the case with only steric interaction and also in
the case with electrostatic and dispersion interactions as well as steric
interaction.

In the usual pore-network simulation, the solutes are initially placed
at the edge of the network (membrane) and the unsteady motion of the
solutes is monitored. In this original simulation, however, partition equi-
librium was assumed at one end of the network (feed phase) and the parti-
cles transported at the other end (receiving phase) by each step were
considered to be permeability in the steady state. These simulations corre-
spond to those for solute transport in membrane dialysis.

SIMULATION METHOD
Porous Media

The porous medium is represented by a two-dimensional square net-
work. The conceptual figure for the network is schematically shown in
Fig. 1. The y-direction is the transport direction. The bonds of the net-
work, which represent the channels of the porous medium, are assumed
to be cylindrical capillary tubes with the same length. The network con-
sists of 1250 sites (50 sites for the x-direction and 25 sites for the y-direc-
tion). The diameters D of the channel are distributed according to the
density functions f(D). The locations of the channels of each width in the
network were determined by random numbers. Three different networks
were formed by three density functions, that is, Gauss density function
with large variance (¢ = 0.133), Gauss density function with small vari-
ance (o = 0.1), and linear density function. These networks are referred
as wide Gauss, narrow Gauss, and linear networks in what follows. All
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FIG. 1 Conceptual figure for two-dimensional square network.

density functions are normalized as [§ AD)dD = 1. These functions,

expressed as Egs. (1)-(3), are shown in Fig. 2.

f(D) = 1/(\/2m0.133) exp{— (D —0.5)%/(2-0.133%)}

{for wide Gauss network) (1)
D) = I(/2m0.1) exp{— (D —0.5)%/(2-0.1>)}
(for narrow Gauss network) (2)
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FIG. 2 Three kinds of density functions: (- - -) Gauss density function with large variance,

(-—-) Gauss density function with small variance, (

) linear density function.
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These channel width (pore) distributions are referred to those of the com-
mercial membranes. A pore distribution close to Gaussian distribution
was reported for the Sartorius cellulose acetate microfilter membrane
(SM11106) (3), and that close to linear distribution was reported for the
polysulfone membrane (IRIS-3026, Rhone-Poulenc) (4).

The average pore diameter D can be calculated by using the density
functions as follows.

D = fmf(D)DdD “4)
0

The porosity of the network P is given by

P

(ijf(D)-rr(D/Z)de>/A
V]
(5

TNI(4A) f “H(D)DdD
4]

where N is the pore (channel) number in the phase perpendicular to the
y-direction and A is the area of that phase, which is not considered in this
work because a two-dimensional square network was used. The value of
nN/(4A) is constant irrespective of the kind of network. The values of D
and [§ f(D)D3dD for three networks are listed in Table 1. The values of
D and [§ f(D)D?dD are almost the same for each network. This means
that each network has almost the same average pore diameter and poros-
ity. Therefore, the difference in the particle (solute) transport characteris-
tics through the networks is attributable to only the difference in pore
distributions.

Transport Procedure

The partitioning between sites at y = 0 (bulk feed phase) and those at
y = 1 (membrane phase) was considered. All the sites (50) in the x-direc-
tion at y = 0 were assumed to be occupied by solute molecules (particies).
The number of solutes occupying the sites at y = 1 was determined by
considering both the solute size and pore sizes (bond sizes) at y = 0

i TABLE 1
Values of D and [§ f(D)D?dD for Various Networks
D 5 f(D)D*dD
Wide Gauss network 0.500 0.271
Narrow Gauss network 0.500 0.263

Linear network 0.518 0.280
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according to the partition coefficients described below. If solutes on sites
at y = 1 move, other solutes were supplied on those sites, and the ratio
of the solute number at y = 1 to that at y = 0, which is the partition
coefficient, was maintained at a constant value at any time. This condition
corresponds to equilibrium partitioning between the bulk feed phase and
the membrane phase.

From the sites at y = 1, solutes undergo a random walk through the
network described above, and their progress to the other boundary site
(y = 26) is followed. Periodic boundary conditions are employed in the
x-direction. According to MacDonald’s method (5), the random walk is
biased in the y-direction, which corresponds to the condition that a driving
force for the transport exists in the y-direction. This bias is imposed by
always considering the possibility of motion in the positive y-direction
first. When this motion is impossible due to the smaller pore size than
the solute size, or if the channel of the y-direction is already occupied by
the solute, the motion of the =+ x-direction is considered to have equal
possibility. If the pore sizes of the bonds of the = x-direction are smaller
than the solute size, the solute remains at the site.

The solutes are moved from one site to another through the channel
based on the residence time in the channel. As described below, the ratio
of diffusivity of hindered transport Dy to bulk diffusivity D.., Dy/D.., is
given by Eqgs. (13) and (14). The reciprocal of the ratio is employed as the
residence time. Therefore, when the pore is fairly large and the diffusion in
the pore is the same as that in the bulk phase, the solute is transported
through the channel in one step. When the pore size is comparable to the
solute size, several steps, whose number is equal to D../Dy for the solute
to move through the channel, are needed. For each step the solutes trans-
ported to the far side of the network (y = 26) are counted as the permea-
tion number. Although several solutes with different sizes were used, we
considered the diffusion of a certain solute individually and not the case
of the solute mixture.

In order to check the effect of network size, simulation was carried out
for a network two times larger with respect to the y-direction. Although
the results showed lower apparent permeabilities compared with those in
the usual network, the effects of the various network types shown in Fig.
2 on the apparent permeabilities and selectivites were similar.

Partition Coefficient

For the hindered transport of rigid solutes in cylindrical pores, the parti-
tion coefficient ®, the ratio of the average interpore concentration (C) to
that in bulk solution C is expressed as follows (13).
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1—x
® = (C)C =2 f exp(— E(B))BdR ©)

where \ is the ratio of solute diameter to pore diameter, E is the potential
describing long-range interactions (electrostatic and dispersion forces) be-
tween the solute and the pore wall (which is assumed to depend only on
the radial position), and B is the dimensionless radial position in the pore
(= rlry, r = radial position, ro = pore radius).

An important special case is that of purely steric interactions between
the solute and the pore wall (E = 0). In this case the following equation
is obtained.

Q=1 -» )

As approximation expressions for either the attractive (van der Waals)
or the repulsive (double layer) energy describing a sphere in a cylindrical
pore, we used those for a sphere interacting with a infinite plate. The
sphere—plate interaction energy for dispersion force E, is given by

E. = HI(6KD)[In(1 + 2alh) — 2(a/h)(1 + alh)/(1 + 2a/h)] ®

where H is the Hamaker constant, k is the Boltzmann constant, T is the
temperature, a is the solute radius, and 4 is the shortest distance between
the solute surface and pore wall (ro — r — a) (14). The sphere—plate
interaction energy for overlapping double layers, E., is expressed as fol-
lows (14).

E, = [16eakTle?)] tanh{e£,/(4kT)} tanh{et./(4kT)} exp(—xh)  (9)

where e is the solution dielectric constant, e is the charge on an electron,
¢, and &,, are the surface potentials of the solute surface and pore wall,
respectively, and k is the Debye parameter. At 298 K for a 1:1 electrolyte
in water, the value of k in A unit is calculated to be

k = 3.04//C;s (10)

where C is an electrolyte concentration in molarity (14). Malone and
Anderson presented the following approximation for the interaction en-
ergy of latex—mica (14)

E = 0.4[In(1 + 2a/h) — 2(a’h)1 + alh)/(1 + 2alh)]
+ 1.0 X 10? exp(—«h) (n

As one typical example, we evaluated the long-range interaction energy
by using Eq. (11). The units of pore diameter and solute diameter have
not been considered by us because we made the simulation more general.
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Since the transport characteristics are almost determined by the ratio of
solute diameter to pore diameter A\ in the case considering only steric
interaction, the units are not very significant and various units are possible
to use. However, when Eq. (11) is used, a unit of 4 (that is, a unit of the
pore diameter) has to be determmed Because dialysis (gel) membranes
with pore sizes of 50 to 100 A have often been reported (17 18), we used
a value of 0.5 for the pore size in Fig. 2, correspond to 75 A, and calculated
the interaction energy by Eq. (11). The partition coefficient & in the pres-
ence of long-range interactions was obtained by substituting the interac-
tion energy E in Eq. (6) and integrating the equation.

Residence Time

The ratio of the diffusivity of hindered transport Dy to the bulk diffusiv-
ity D= is expressed as follows for the hindered transport of rigid solutes
(13).

1—x
D K ~'(\, B) exp(— E(B))BdB
H _ Jo
D. = =Y (12)
| exp—E@pap

where K(), B) is an enhanced drag coefficient. The usual ‘*centerline ap-
proximation’’ that K(\, B) is approximated by K(X, 0) (13) was adopted
by us. The centerline approximation leads to Eq. (13) regardless of the
value of E.

Du/D. = K7'(\, 0) (13)

Bungay and Brenner presented the following equation for KX ~'(\, 0) as
accurate even for larger value of A (19).

K (N, 0)=6n/[9/47w? \/i(l —N)~¥2{1—-73/60(1 — \)+77293/50400(1 — 1)*}

— 22.5083 —5.61170 —0.3363\2 — 1.216\% + 1.647\*] (14)

Although Eq. (16) was derived for E = 0, K ~'(\, 0) is independent of E
when the centerline approximation is adopted. Therefore, we evaluated
the value of Dy/D. by Eq. (14) both in the absence and in the presence
of long-range interactions. As described above, the reciprocal of Dy/D-.
was used as the residence time in the channel. Since integers need to be
used as the residence time, the values of D../Dyg were rounded off to
integers.
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RESULTS AND DISCUSSION

Case Considering Only Steric Interaction between Solute
and Pore Wall

Figure 3 shows the effects of pore diameters and solute diameters on the
partition coefficient ¢ and the residence time. Only the steric interaction
between the solute and the pore wall was considered in this case. The
partition coefficient was calculated by Eq. (7), and the residence time was
obtained as the reciprocal of Dy/D.. as calculated by Eq. (14). The parti-
tion coefficient decreased monotonously with decreasing the pore diame-
ter and increasing the solute diameter, due to the exclusion effect. Con-
trarily, the residence time increased with a decrease in the pore diameter
and with an increase in the solute diameter. As the solute diameter ap-
proaches the pore diameter, the residence time increases abruptly. The
extremely large residence time means that it is actually impossible for the
solute to move in the channel.

.

T T l. 1 1 T 1 {
solute diameter

partition Cg:oefﬁcient
)]

o

[8)]
(@]

residence time
N w BN
[®] (@] (@]

T N ) T i

-t
(@]
A

pore diameter

FIG. 3 Effect of pore diameter and solute diameter on partition coefficient and residence
time.



11: 32 25 January 2011

Downl oaded At:

2358 MATSUYAMA, TERAMOTO, AND SUZUKI

Figure 4 shows the relation between the permeation number and the
step number for a wide Gauss network. The permeation number is the
number of solutes transported to the far side of the network for each step.
In the region of large step numbers, nearly constant permeation numbers
were obtained. These nearly constant values can be regarded as the appar-
ent permeabilities in the steady state. These values in the steady state
decrease with an increase in the solute diameter. In what follows, these
apparent permeabilities in the steady state are considered.

The effects of the kinds of networks on the partition coefficient and the
apparent permeability are shown in Fig. 5. The partition coefficients were
hardly influenced by the kinds of networks. On the other hand, the perme-
abilities were clearly dependent on the kinds of networks. Although the
networks have almost the same average pore diameter and porosity, a
difference in the pore distributions brings about a difference in the perme-
abilities. The apparent permeability for a linear network is largest, and
that for a wide Gauss network is lowest.

According to the solution-diffusion mechanism, the permeability is
given by the product of the partition coefficient and the diffusivity. The
apparent diffusivities obtained by dividing the permeability by the parti-
tion coefficient are shown in Fig. 6. The data shown in Fig. 5 for the
permeabilities and the partition coefficients were used in the calculation.
The diffusivities were dependent on the kinds of networks, and the order
of magnitude of the diffusivities was the same as that of the apparent
permeabilities. Even if the average pore diameter and porosity are nearly

o

f;’ solute diameter=0.1

E ool |

i | 0.13

& ] \

gl s

g 0.24

§ 5% 0.19 0.21

2 1 \

21| AR AN A A
0- . e
0 500 1000 1500

step number

FIG. 4 Relation between permeation number and step number for wide Gauss network.
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the same for each network, the total diffusion property decreases for a
network with more small pores in which the solute cannot be transported
or remains for a long time. Therefore, the wide Gauss network showed
the lowest diffusivity because the network has more small pores, as shown
in Fig. 2. For each network the order of magnitude of fractions of small
pores corresponds inversely to the order of diffusivity. In the series of
channels from one side of the network to the other side, the existence of
only one small pore brings about an extreme decrease in the diffusivity.
Therefore, diffusivity is sensitive to the fraction of small pores. On the
other hand, the partition coefficient mainly depends on the fraction of
large pores and is not as sensitive to the fraction of small pores. This is
the reason why the dependence of the partition coefficients on the kinds
of networks is weak, as shown in Fig. 5. In this system the difference in
the diffusivities reflects the difference in the apparent permeabilities for
each network.

Figure 7 shows the effects of the kinds of networks on selectivity. Selec-
tivity is defined as the ratio of the apparent permability for a solute with
a diameter of 0.1 to that for a larger solute. Selectivity shows a tendency
opposite to that of the apparent permeability. That is, the wide Gauss
network showed the largest selectivity and the linear network showed the
lowest. When the pore size is sufficiently large, solutes can be transported
in the channel by one step regardless of the solute sizes. This means that
a large pore cannot distinguish the differences in solute diameters. On the
other hand, a small pore can recognize the difference in solute sizes more
clearly. This is the reason why selectivity becomes higher for a network
with more small pores in spite of the smaller apparent permeability. A

iy
o

e
| O wide Gauss network
O narrow Gauss network
A linear network

selectivity
N
Q
v ¥

"

0.2 03
solute diameter

FIG. 7 Effect of kinds of networks on selectivity,
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network with a sharp pore distribution is usually considered to give high
selectivity. This is true only in the case where the average pore diameter
is approximately in agreement with the diameter of a solute which can be
transported. It should be noted that when the diameter of a solute is fairly
smaller than the average pore diameter used in this simulation system, a
network with a broad pore distribution and with more small pores can
give higher selectivity.

Case Considering Electrostatic and Dispersion
Interactions in Addition to Steric Interaction

When there are electrostatic and dispersion (van der Waals) interactions
between the solute and the pore wall, the interaction energy E is given in
Eq. (11) for the case of latex—mica interaction. The partition coefficients
obtained by substituting the interaction energy E in Eq. (6) are shown in
Fig. 8 for various electrolyte concentrations. Because the repulsive (dou-
ble layer) forces are predominant in this case, the partition coefficients
decrease when the long-range interactions are introduced. As shown in
Eq. (10), the Debye parameter k, which is a length scale over which the
electrostatic interaction occurs, increases as the electrolyte concentration
decreases, so that the solute is repelled from the pore wall over a greater
range of distances. Thus, the partition coefficients decrease with a de-
crease in the electrolyte concentration, as shown in Fig. 8.

As described above, the ratio Dg/D.. is independent of the interaction
energy E as far as the centerline approximation is employed. Therefore,

1 1 1 T ] L Ll T T ]
el -
S 3
2 - Cs=0.1mol/dm
0 A
O E:O 4" -~
o 0.5t //’0.01monm?:
c | - _-="
(] R4 P
= 3 ’ // e ]
E r s/ .~"0.001moyam3
Q - - -

Ll d | P=d (Y O TR T B |
0 0.5 1

pore diameter

FIG. 8 Partition coefficient in the presence of long-range interactions. Solute
diameter = 0.1.
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the same value was used as the residence time both in the absence and
in the presence of long-range interactions.

Figure 9 shows the apparent permeability and selectivity in the presence
of long-range interactions. By introducing those interactions, the apparent
permeability decreases, and the decrease becomes more significant with
a decrease in the electrolyte concentrations. This is attributable to a de-
crease in the partition coefficient as shown in Fig. 8. On the other hand,
the introduction of long-range interactions brings about an increase in
selectivity. The repulsive (double layer) force is not uniform for the solutes
with different diameters, and it has a tendency to increase as the solute
diameter increases and approaches pore size. Therefore, when long-range
interaction is considered, the apparent permeability decreases more
sharply with an increase in the solute diameter due to increasing repulsive
force in addition to the normal exclusion effect. This is the reason why
the selectivity, which is defined as the ratio of the apparent permeability

; L B |
g O E=0 7
810 O Cg=0.1molidm3_ ]
foh) A Cs=0.01mol/dm3 :
£ ® Cg=0.001mol/dm®
= 1
8 |
= 50
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[¢3]
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Q
Q
® 0
I ——
- —
O E=0
100~ o Cs=0.1moI/dm33 5
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2 [ eCs=000tmolidm 1
: | :
@ 50 .
Q ™ —
w | -
[ i

02 03
solute diameter

FIG. 9 Apparent permeability and selectivity in the presence of long-range interactions:
narrow Gauss network.
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for a solute with a diameter of 0.1 to that of a larger solute, increases when
long-range interactions are introduced. This simulation clearly shows that
introduction of repulsive electrostatic interaction to a membrane separa-
tion system is effective from the standpoint of enhancing selectivity.
The effects of the kinds of networks on the apparent permeability and
selectivity are shown in Fig. 10. These are simulation results for an electro-
lyte concentration of 0.1 mol/dm?®. The tendency of the apparent perme-
ability and selectivity is the same as that for the case considering only
steric interaction. That is to say, the linear network shows the largest
permeability and the lowest selectivity, and the wide Gauss network gives
the smallest permeability and the highest selectivity. Although the intro-
duction of long-range interactions results in a decrease in the partition
coefficient, the degree of decreases in the partition coefficients is not very
different for various networks. This leads to similar effects on the trans-

e A i
E O wide Gauss network .
10 {Jnarrow Gauss network
8 Alinear network .
E P -
-

A Cg=0.1moldm3 -
— 50 u -1
C L _
e i
m - -
Q.
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I I A T U O W N A
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FIG. 10 Effect of kinds of networks on apparent permeability and selectivity in the presence
of long-range interactions.
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port properties of various kinds of networks both in the absence and in
the presence of long-range interactions.

CONCLUSIONS

Simulation of particle (solute) diffusion through porous media (mem-
brane) was carried out for various networks with aimost the same average
pore diameters and porosities, but with different pore size distributions.
The partition equilibrium of solute between the bulk feed phase and the
membrane phase was established at the feed side, and the apparent perme-
ability in the steady state was evaluated. The conclusions obtained were
as follows.

1. When only the steric interaction between the solute and the pore wall
was considered, the partition coefficients were not very different for
various networks. However, the apparent permeability and selectivity
were clearly dependent on the kinds of networks; that is, on the pore
size distributions. The network with more small pores showed smaller
permeability and higher selectivity.

2. Furthermore, long-term interactions such as the electrostatic and dis-
persion (van der Waals) interactions between the solute and the pore
wall were considered. By the introduction of these interactions, the
apparent permeability decreased, and the decrease became more sig-
nificant with a decrease in the electrolyte concentration. On the other
hand, the introduction of these interactions brought about an increase
in selectivity. Thus, it was confirmed in this simulation that the repul-
sive electrostatic interaction between the solute and the pore wall is
effective for enhancing selectivity. The effects of the kinds of net-
works on transport properties were similar to those in the case consid-
ering only steric interaction.

SYMBOLS

area of phase perpendicular to y-direction
solute radius

bulk concentration

electrolyte concentration (mol/dm?3)
average interpore concentration
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bulk diffusivity
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E(B) potential describing long-range interactions between solute and
pore wall

E, interaction energy for dispersion force

E. interaction energy for overlapping double layers

e charge on electron (C)

(D) density function

H Hamaker constant (J)

h shortest distance between solute surface and pore wall (= ro —
r — a)

K enhanced drag coefficient

k Boltzmann constant (J/K)

N pore number in phase perpendicular to y-direction

P porosity of network

r radial position in pore

ro pore radius

T temperature (K)

Greek

a variance of Gauss density function

B dimensionless radial position in pore (= r/rp)

€ solution dielectric constant

) partition coefficient

K Debye parameter (m™!)

A ratio of solute diameter to pore diameter

& surface potential of solute surface (J/C)

Ew surface potential of pore wall (J/C)
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